
� This form of composite (fiber-reinforced) is grown in the

matrix are usually softer, so that the resulting product

with a high strength / weight ratio.

� Matrix material to pass on the burden of fiber / fiber 

that absorbs stress.

� To get an effective strengthening and stiffening, then 

keep in mind the long critique of fiber.



EFFECT OF FIBER LENGTH

� Mechanical properties of fiber-reinforced composite is 

influenced by the nature of the fiber and how to load 

forwarded / transmitted on the fiber.

� Load transmittance is affected by the magnitude of the 

interfacial bonding between the fiber and the matrix.

� Under certain stress, the bond between the fiber and 

the matrix ends at the end of the fiber, so the resulting 

matrix deformation pattern is as shown in the following 

slide. 



The deformation pattern in the matrix surrounding of fiber, 

subjected to an applied tensile. 



� There are some critics long it takes for the fiber 

reinforcement to be effective.

� Critical length lc depends on the fiber diameter and 

tensile strength σσσσ*f , also on the fiber-matrix bond 

strength ττττc, according to the following equation:
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Example: for a combination of glass and carbon fiber, lc = 

1 mm

(3)



Stress–position profiles when fiber length is equal to the 

critical length



Stress–position profiles when fiber length is greater than the 

critical length



Stress–position profiles when fiber length is less than the 

critical length



� Composite strength is due to the bonding between the 

fiber reinforcement with the matrix.

� The ratio length / diameter (called the aspect ratio) of 

the fiber will affect the properties of the composite.

The larger aspect ratio, the stronger composite.

� Therefore for composite construction, the fiber length is 

better than short fibers.

However, the fiber length is more difficult to produce 

than short fibers.

Short fibers arranged in a matrix easier, but the effect is 

less good gains compared to the fiber length.



Hence the need for trade-offs between the type of fibers 

used to strengthen the desired effect.

The amount of fiber also affects the strength of the 

composite; increasing numbers of fibers, the stronger the 

resulting composite.

The maximum limit of the amount of fiber is about 80% of 

the composite volume. If the number of fibers> 80% then 

the matrix can not cover the entire fiber perfectly.

� Fibers with l >> lc (normal: l> 15 lc) is called continuous, 

while fibers with l <15 lc called discontinuous.

� If the fiber length <lc, then the resulting composite is 

basically the same as the particulate composites.







Arrangement or orientation of fibers to other fibers, fiber 

concentration, and uniformity of distribution will affect 

the strength and other properties of fiber-reinforced 

composites.

There are two extreme orientations: (i) regular parallel, 

and (ii) entirely random.

Continuous fibers are usually regularly aligned, 

discontinuous fiber can while regular or random.

EFFECT OF FIBER ORIENTATION AND CONCENTRATION



Mechanical properties of the composite type of this depends on:

� Stress-strain behavior of the fiber and matrix

� Volume fraction of each component

� Direction of stress or strain on the composite material.

The properties of fiber composites with highly anisotropic

regular, ie. the value of the properties depend on the

direction of measurement.

We note the stress-strain behavior when stress applied

parallel to the direction of the fiber material, the

longitudinal direction, as shown in Figure (a).



Ilustrasi dari fiber-reinforced composites yang (a) kontinyu dan

teratur, (b) diskontinyu dan teratur, and (c) diskontinyu dan acak



stress vs. strain behavior of the fiber and the matrix

phase, as shown in the following slide.

In this case the fiber is very fragile / brittle and the matrix

is sufficiently elastic / ductile.

On the picture:

σσσσ*f : fracture strength in tension for fiber

σσσσ*m : fracture strength in tension for matrix

εεεε*f : fracture strain in tension for fiber

εεεε*m : fracture strain in tension for matrix



(a) Schematic stress–strain curves for brittle fiber and ductile matrix materials. Fracture 

stresses and strains for both materials are noted. (b) Schematic stress–strain curve for an 

aligned fiber-reinforced composite that is exposed to a uniaxial stress applied in the 

direction of alignment; curves for the fiber and matrix materials shown in part (a) are also 

superimposed.



Stress-strain behavior of the composite material is shown in the 

figure (b).

In the area of   Stage I, fiber and matrix deform elas=cally; stress-

strain behavior is usually a linear curve. Matrix deforms plastically, 

whereas fibers have elastic stretch.

In the area of   Stage II, the rela=onship between stress and strain is 

almost linear with a slope smaller than stage I.

The onset of composite failure is characterized by current fiber 

starts to break down, when the strain = εεεε*f.

In this condition has not been damaged composite true, because

Not all fiber is damaged at the same time,

Although most fiber had been damaged, but the matrix is still intact 

because εεεε*f < εεεε*m



Let us now consider the elastic behavior of a continuous and

oriented fibrous composite that is loaded in the direction of

fiber alignment.

First, it is assumed that the fiber–matrix interfacial bond is

very good, such that deformation of both matrix and fibers is

the same (an isostrain situation).

Under these conditions, the total load sustained by the

composite Fc is equal to the sum of the loads carried by the

matrix phase Fm and the fiber phase Ff, or:

fmc FFF ++++==== (4)



From the definition of stress:

AF σσσσ====

Equation (4) can be written as:

ffmmcc AAA σσσσ++++σσσσ====σσσσ (5)

dividing through by the total cross-sectional area of the 

composite, we have:
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where Am/Ac and Af/Ac are the area fractions of the matrix 

and fiber phases, respectively.



If the composite, matrix, and fiber phase lengths are all equal, 

Am/Ac is equivalent to the volume fraction of the matrix, Vm, 

and Af/Ac and likewise for the fibers, Vf = Af/Ac.

Eq. (6) now becomes:

ffmmc VV σσσσ++++σσσσ====σσσσ (7)

The previous assumption of an isostrain state means that:
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and when each term in eq. (7) is divided by its respective strain
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Furthermore, if composite, matrix, and fiber deformations 

are all elastic, then

the E’s being the moduli of elasticity for the respective 

phases. Substitution into eq. (9) yields an expression for 

the modulus of elasticity of a continuous and aligned 

fibrous composite in the direction of alignment (or 

longitudinal direction), as

ccc E====εεεεσσσσ
mmm E====εεεεσσσσ fff E====εεεεσσσσ

ffmmcl VEVEE ++++==== (10.a)

(((( )))) fffmcl VEV1EE ++++−−−−==== (10.b)



Thus, Ecl is equal to the volume-fraction weighted average of 

the moduli of elasticity of the fiber and matrix phases. 

Other properties, including density, also have this 

dependence on volume fractions. 

for longitudinal loading, that the ratio of the load carried by 

the fibers to that carried by the matrix is:
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EXAMPLE 1

A continuous and aligned glass fiber-reinforced composite 

consists of 40 vol% of glass fibers having a modulus of 

elasticity of 69 GPa and 60 vol% of a polyester resin that, 

when hardened, displays a modulus of 3.4 GPa.

a. Compute the modulus of elasticity of this composite in 

the longitudinal direction.

b. If the cross-sectional area is 250 mm2 and a stress of 50 

MPa is applied in this longitudinal direction, compute the 

magnitude of the load carried by each of the fiber and 

matrix phases.

c. Determine the strain that is sustained by each phase 

when the stress in part (b) is applied.



SOLUTION

a. The modulus of elasticity of the composite is calculated 

using eq. (10.a):

( )( ) ( )( )4.0696.04.3 GPaGPafVfEmVmEclE +=+=

= 30 GPa

b. To solve this portion of the problem, first find the ratio 

of fiber load to matrix load, using eq. (11); thus,
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In addition, the total force sustained by the composite Fc may 

be computed from the applied stress σσσσ and total composite 

cross-sectional area Ac according to
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this total load is just the sum of the loads carried by fiber 

and matrix phases; that is,
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c. The stress for both fiber and matrix phases must first be 

calculated. Then, by using the elastic modulus for each 

(from part a), the strain values may be determined.
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A continuous and oriented fiber composite may be loaded in 

the transverse direction; that is, the load is applied at a 90°°°°

angle to the direction of fiber alignment.

For this situation the stress σσσσ to which the composite as well 

as both phases are exposed is the same, or

σσσσ====σσσσ====σσσσ====σσσσ fmc (12)

This is termed an isostress state.  Also, the strain or defor-

mation of the entire composite is:
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Substituting the above three to equations  (13) yields:



where is Ect the modulus of elasticity in the transverse 

direction. 

Now, dividing through by σσσσ yields
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which reduces to
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EXAMPLE 2

Compute the elastic modulus of the composite material 

described in Example 1, but assume that the stress is applied 

perpendicular to the direction of fiber alignment.

SOLUTION

According to eq. (13): 
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We now consider the strength characteristics of continuous and aligned 

fiber-reinforced composites that are loaded in the longitudinal 

direction. 

Under these circumstances, strength is normally taken as the maximum 

stress on the stress–strain curve.

Often this point corresponds to fiber fracture, and marks the onset of 

composite failure.

Table 1 lists typical longitudinal tensile strength values for three 

common fibrous composites. 

Failure of this type of composite material is a relatively complex 

process, and several different failure modes are possible. 

The mode that operates for a specific composite will depend on fiber 

and matrix properties, and the nature and strength of the fiber–matrix 

interfacial bond.



Onset of composite failure



Table 1. Typical Longitudinal and Transverse Tensile Strengths 

for Three Unidirectional Fiber-Reinforced Composites. 

The Fiber Content for Each Is Approximately 50 Vol%



If we assume that εεεε*f < εεεε*m, which is the usual case, then 

fibers will fail before the matrix. 

Once the fibers have fractured, the majority of the load that 

was borne by the fibers is now transferred to the matrix. This 

being the case, it is possible to adapt the expression for the 

stress on this type of composite, eq. (7), into the following 

expression for the longitudinal strength of the composite εεεε*cl
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Here σσσσ’m is the stress in the matrix at fiber failure and, σσσσ*f

as previously, is the fiber tensile strength.



σσσσ’m



The strengths of continuous and unidirectional fibrous composites 

are highly anisotropic, and such composites are normally designed 

to be loaded along the high strength, longitudinal direction. 

However, during in-service applications transverse tensile loads 

may also be present. 

Under these circumstances, premature failure may result 

inasmuch as transverse strength is usually extremely low—it 

sometimes lies below the tensile strength of the matrix. 

Thus, in actual fact, the reinforcing effect of the fibers is a negative 

one. 

Typical transverse tensile strengths for three unidirectional 

composites are contained in Table 1.



Whereas longitudinal strength is dominated by fiber

strength, a variety of factors will have a significant influence

on the transverse strength; these factors include properties

of both the fiber and matrix, the fiber–matrix bond strength,

and the presence of voids.

Measures that have been employed to improve the

transverse strength of these composites usually involve

modifying properties of the matrix.



Even though reinforcement efficiency is lower for dis-

continuous than for continuous fibers, discontinuous and 

aligned fiber composites are becoming increasingly more 

important in the commercial market.

Chopped glass fibers are used most extensively; carbon and 

aramid discontinuous fibers are also employed.

These short fiber composites can be produced having moduli

of elasticity and tensile strengths that approach 90% and 

50%, respectively, of their continuous fiber counterparts.



For a discontinuous and aligned fiber composite having a 

uniform distribution of fibers and in which l > lc, the 

longitudinal strength (σσσσ*cd) is given by the relationship:
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where σσσσ*f and σσσσ’m represent, respectively, the fracture 

strength of the fiber and the matrix when the composite fails.

If l < lc then the longitudinal strength is given by

(18)
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where d is the fiber diameter and ττττc is the smaller of either 

the fiber–matrix bond strength or the matrix shear yield 

strength.



Normally, when the fiber orientation is random, short and 

discontinuous fibers are used.

Under these circumstances, a “rule-of-mixtures” expression 

for the elastic modulus similar to eq. (10.a) may be utilized, 

as follows:

mmffcd VEVEKE ++++==== (20)

In this expression, K is a fiber efficiency parameter that 

depends on and the Ef/Em ratio. 

Of course, its magnitude will be less than unity, usually in 

the range 0.1 to 0.6.



Thus, for random fiber reinforcement (as with oriented), the

modulus increases in some proportion of the volume fraction

of fiber.

Table 2, which gives some of the mechanical properties of

unreinforced and reinforced polycarbonates for dis-

continuous and randomly oriented glass fibers, provides an

idea of the magnitude of the reinforcement that is possible.



Table 2. Properties of Unreinforced and Reinforced 

Polycarbonates with Randomly Oriented Glass Fibers



Table 3. Reinforcement Efficiency of Fiber-Reinforced 

Composites for Several Fiber Orientations and at Various 

Directions of Stress Application


